Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 235: 119877, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989800

RESUMEN

Catalytic hydrogenation of nitrate in water has been studied primarily using nanoparticle slurries with constant hydrogen-gas (H2) bubbling. Such slurry reactors are impractical in full-scale water treatment applications because 1) unattached catalysts are difficult to be recycled/reused and 2) gas bubbling is inefficient for delivering H2. Membrane Catalyst-film Reactors (MCfR) resolve these limitations by depositing nanocatalysts on the exterior of gas-permeable hollow-fiber membranes that deliver H2 directly to the catalyst-film. The goal of this study was to compare the technical feasibility and benefits of various methods for attaching bimetallic palladium/indium (Pd/In) nanocatalysts for nitrate reduction in water, and subsequently select the most effective method. Four Pd/In deposition methods were evaluated for effectiveness in achieving durable nanocatalyst immobilization on the membranes and repeatable nitrate-reduction activity: (1) In-Situ MCfR-H2, (2) In-Situ Flask-Synthesis, (3) Ex-Situ Aerosol Impaction-Driven Assembly, and (4) Ex-Situ Electrostatic. Although all four deposition methods achieved catalyst-films that reduced nitrate in solution (≥ 1.1 min-1gPd-1), three deposition methods resulted in significant palladium loss (>29%) and an accompanying decline in nitrate reactivity over time. In contrast, the In-Situ MCfR-H2 deposition method had negligible Pd loss and remained active for nitrate reduction over multiple operational cycles. Therefore, In-Situ MCfR-H2 emerged as the superior deposition method and can be utilized to optimize catalyst attachment, nitrate-reduction, and N2 selectivity in future studies with more complex water matrices, longer treatment cycles, and larger reactors.


Asunto(s)
Nitratos , Purificación del Agua , Hidrógeno , Paladio , Purificación del Agua/métodos , Catálisis
2.
Environ Sci Technol ; 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34309365

RESUMEN

Heterogeneous catalysis holds great promise for oxidizing or reducing a range of pollutants in water. A well-recognized, but understudied, barrier to implement catalytic treatment centers around fouling or aging over time of the catalyst surfaces. To better understand how to study catalyst fouling or aging, we selected a representative bimetallic catalyst (Pd-In supported on Al2O3), which holds promise to reduce nitrate to innocuous nitrogen gas byproducts upon hydrogen addition, and six model solutions (deionized water, sodium hypochlorite, sodium borohydride, acetic acid, sodium sulfide, and tap water). Our novel aging experimental apparatus permitted single passage of each model solution, separately, through a small packed-bed reactor containing replicate bimetallic catalyst "beds" that could be sacrificed weekly for off-line characterization to quantify impacts of fouling or aging. The composition of the model solutions led to the following gradual changes in surface composition, morphology, or catalytic reactivity: (i) formation of passivating species, (ii) decreased catalytic sites due to metal leaching under acid conditions or sulfide poisoning, (iii) dissolution and/or transformation of indium, (iv) formation of new catalytic sites by the introduction of an additional metallic element, and (v) oxidative etching. The model solution water chemistry captured a wide range of conditions likely to be encountered in potable or industrial water treatment. Aging-induced changes altered catalytic activity and provided insights into potential strategies to improve long-term catalyst operations for water treatment.

3.
J Hazard Mater ; 258-259: 42-9, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23692682

RESUMEN

Stable ß-Bi2O3/TiO2-NTs photocatalyst with excellent visible-light-activity is successfully prepared by bidirectional doping. Stake structure of the TiO2-NTs provides a larger specific surface area and makes the contact area between the TiO2-NTs and ß-Bi2O3 much larger; The stake structure of TiO2-NTs not only leads to a firmer combination of TiO2-NTs and ß-Bi2O3, but also makes them dope one another deeply. The modification of Bi species into TiO2-NTs can form Bi-O-Ti chemical absorption bonds, then a localized impurity level is generated within the band gap. Electrons can be excited and transferred from the Bi(3+) impurity level to the conduction band (CB) of TiO2, similar to narrowing the band-gap of TiO2-NTs, resulting in a red shift of the absorption edge and an enhancement in visible-light activity. During annealing, Bi atoms are partially replaced by Ti atoms. The lattice of ß-Bi2O3 is compressed around the Ti impurity, making the lattice dislocate and distort. This dislocation and distortion leads to an increase in the ß-Bi2O3 valance band (VB), from 2.02 to 2.28 eV. Accordingly, the weak oxidability of ß-Bi2O3 is improved, and its photocatalytic ability is further enhanced. Moreover, this lattice dislocation and distortion changes the Bi-O distances, thus remarkably improving the stability of the ß-Bi2O3/TiO2-NTs.


Asunto(s)
Bismuto/química , Luz , Nanotubos , Titanio/química , Catálisis , Oxidación-Reducción , Fotólisis , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...